Pascal Frey

Professor, Laboratoire Jacques Louis Lions, UFR de Mathematiques, UPMC Paris 06

"La Universidad debe ser el cerebro de un país, el centro donde se investiga, se planea, se discute cuanto dice relación al bien común de la nación y de la humanidad. Y el universitario debe llegar a adquirir la mística de que en el campo propio de su profesión no es sólo un técnico, sino el obrero intelectual de un mundo mejor."
A. Hurtado (1901-1952)

Contact

Office: 3-17, hall 15-25;   Phone: (+33) 1 4427 9153;   Email: pascal.frey@upmc.fr.
Laboratoire Jacques Louis Lions, UFR 929, UPMC Paris 06,
4 place Jussieu, 75005 Paris, France.

Research interests

Employment record

Vitae

Publications (selection)

  1. Monographs and book chapters
    1. Mesh Generation. Application to finite elements, P.J. Frey and P.L. George, Wiley, London, 848 p., 2008 (2nd ed.).
    2. A differential geometry approach to mesh generation, P. Frey, in Series in Contemporary Applied Mathematics, vol. 9, P.G. Ciarlet, T. Li eds., World Scientific, 2008.
    3. Mesh generation and mesh adaptivity: theory, techniques, P.L. George, H. Borouchaki, P.J. Frey, P. Laug and E. Saltel, in Encyclopedia of computational mechanics, E. Stein, R. de Borst and T.J.R. Hughes ed., John Wiley & Sons Ltd., 2004.
    4. Le maillage facile, P.J. Frey et P.L. George, Hermès Science, Paris, 196 p., 2003.
    5. Mesh Generation and Related Topics. Application to Finite Elements, P.J. Frey and P.L. George, in New Advances in Computational Fluid Dynamics - Theory, Methods and Applications, F. Dubois, ed., Higher Education Press, 1-68, 2001.
    6. Arbres et mailles, P.J. Frey, in Maillage et adaptation, P.L. George ed., Traité Mécanique et Ingénierie des Matériaux, Série Méthodes Numériques, Hermès Science, Paris, 63-104, 2001.
    7. Estimateurs d'erreur géométriques et adaptation de maillage, H. Borouchaki, D. Chapelle, P.L. George, P. Laug et P.J. Frey, in Maillage et adaptation, P.L. George ed., Traité Mécanique et Ingénierie des Matériaux, Série Méthodes Numériques, Hermès Science, Paris, 279-310, 2001.
    8. Maillages. Applications aux éléments finis, P.J. Frey et P.L. George, Hermès Science, Paris, 840 p., 1999.

  2. Referred papers
    1. Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, Ch. Dapogny, C. Dobrzynski, P. Frey, J. Comp. Phys., 2014 ()DOI)
    2. A mesh evolution algorithm based on the level set method for geometry and topology optimization, G. Allaire, Ch. Dapogny, P. Frey, SMO, 2013. (DOI)
    3. An accurate anisotropic adaptation method for solving the level set advection equation, C. Bui, Ch. Dapogny, P. Frey, Int. J. Numer. Methods in Fluids, 2012. (DOI)
    4. Computation of the signed distance function to a discrete contour on adapted triangulation, Ch. Dapogny and P. Frey, Calcolo, 2012. (DOI)
    5. A nonlinear PDE model for reconstructing a regular surface from sampled data using a level set formulation on triangular meshes, A. Claisse and P. Frey, J. Comp. Phys., 2011, (DOI)
    6. A generalized model of nonlinear viscoelasticity: numerical issues and applications, M. de Buhan, P. Frey, Int. J. Numer. Methods Engng., 86(13), 1544-1557, 2011. (DOI)
    7. A coupling strategy for solving two-fluid flows, T.T.C. Bui, P. Frey and B. Maury, Int.J. Numer. Methods in Fluids, 66(10), 1226-1247, 2011, (DOI).
    8. Level set driven smooth curve approximation from unorganized or noisy point set, A. Claisse and P. Frey, ESAIM Proc., 2008.
    9. Levelsets and anisotropic adaptation, A. Claisse, V. Ducrot and P. Frey, Discrete and Continuous Dynamical Systems - Series A (DCDS-A), 23(1-2), 165-183, 2008.
    10. 3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations,, F. Alauzet, P. Frey, P.L. George and B. Mohammadi, J. Comp. Phys., 222, 592-623, 2007.
    11. Fast and accurate simulations of air-cooled structures, C. Dobrzynski, P. Frey, B. Mohammadi and O. Pironneau, Comput. Methods Appli. Mech. Engng., 195, 3168-3180, 2006.
    12. Simplification of surface mesh using Hausdorff enveloppe, H. Borouchaki and P. Frey, Comput. Methods Appli. Mech. Engrg., 194, (48-49), 4864-4884, 2005.
    13. Anisotropic mesh adaptation for CFD computations, P. Frey and F. Alauzet, Comput. Methods Appli. Mech. Engrg., 194, (48-49), 5068-5082, 2005.
    14. Fluid-structure interaction in blood flows on geometries coming from medical imaging, J.F. Gerbeau, M. Vidrascu and P. Frey, Computers and Structures, 83, 2-3, 155-165, 2005.
    15. Generation and adaptation of computational surface meshes from discrete anatomical data, P.J. Frey, Int. j. numer. meth. engng., 60, 1049-1074, 2004.
    16. From arteriographies to computational flow in saccular aneurisms: the INRIA experience, J.D. Boissonnat et al., Medical Image Analysis, 2004.
    17. Transient fixed point based unstructured mesh adaptation, F. Alauzet and P.L. George and B. Mohammadi and P.J. Frey and H. Borouchaki, Int. j. numer. methods fluids, 43, 6-7, 729-745, 2003.
    18. Surface meshing using a geometric error estimate, P.J. Frey and H. Borouchaki, Int. j. numer. methods engng, 58, 2, 227-245, 2003.
    19. Maillage géométrique des surfaces, P.J. Frey et H. Borouchaki, REEF, 8, 47-75, 1999.
    20. Surface mesh quality evaluation, P.J. Frey and H. Borouchaki, Int. j. numer. methods engng., 45, 101-118, 1999.
    21. Mesh gradation control, H. Borouchaki and F. Hecht and P.J. Frey, Int. j. numer. methods engng., 43, 6, 1143-1165, 1998.
    22. Adaptive triangular-quadrilateral mesh generation, H. Borouchaki and P.J. Frey, Int. j. numer. methods engng., 41, 915-934, 1998.

  3. Notes aux Comptes Rendus, Série I
    1. Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh, G. Allaire, Ch. Dapogny, P. Frey, C.R. Acad. Sci., Paris, Série I, 2011. (DOI)
    2. Construction d'une courbe régulière d'approximation d'un ensemble de points, A. Claisse et P. Frey, C.R. Acad. Sci., Paris, Série I, 2008. (DOI)
    3. Méthode du second membre modifié pour la gestion de rapports de viscosité importants dans le problème de Stokes bifluide, C. Bui, P. Frey et B. Maury, C.R. Acad. Sci., Paris, Série I, 336, 524-529, 2008.
    4. Contrôle de l'approximation géométrique d'une interface par une métrique anisotrope,, V. Ducrot et P. Frey, C.R. Acad. Sci., Paris, Série I, 345, 537-542, 2007.
    5. Adaptation de maillages pour des problèmes instationnaires, F. ALauzet, P.J. Frey et B. Mohammadi, C.R. Acad. Sci., Paris, Série I, 336, 773-778, 2002.
    6. Simplification des cartes géographiques par minimisation de la déformation locale, P. Frey et H. Borouchaki, C.R. Acad. Sci., Paris, Série I, 334, 227-232, 2002.
    7. Delaunay admissibilité des triangulations de surfaces, Ph. Pébay et P. Frey, C.R. Acad. Sci., Paris, Série I, 327, 313-318, 1998.
    8. Qualité des maillages de surfaces, P. Frey et H.Borouchaki, C.R. Acad. Sci., Paris, Série I, 325, 925-930, 1997.
    9. Maillages de surfaces paramétriques. Partie III: éléments quadrangulaires, H.Borouchaki, P. Frey et P.L. George, C.R. Acad. Sci., Paris, Série I, 325, 551-556, 1997.
    10. Triangulation des surfaces implicites, P. Frey et H.Borouchaki, C.R. Acad. Sci., Paris, Série I, 325, 101-106, 1997.

  4. Conference Proceedings and preprints
    1. A PDE based approach to multi-domain partitioning and quadrilateral meshing, Proc 21th Int. Meshing Roundtable, Pittsburgh, 2012.
    2. Anisotropic level set adaptation for accurate interface capturing, Proc 17th Int. Meshing Roundtable, Pittsburgh, 2008.
    3. Anisotropic Delaunay mesh adaptation for unsteady simulations, Proc. 17th Int. Meshing Roundtable, Pittsburgh, 2008.
    4. Achievement of Global Second Order Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes, 18th AIAA CFD Conference, Miami, FL, USA, 2007.
    5. Multi-Dimensional Continuous Metric for Mesh Adaptation, 15th Int. Meshing Roundtable, Birmingham, AL, USA, 2006.
    6. From medical images to computational meshes (slides), 2nd workshop on computer assisted diagnosis and surgery, Santiago, Chile, 2006.
    7. Perspectives of local anisotropic Delaunay mesh adaptation (slides), 14th Int. Meshing Roundtable, San Diego, CA, USA, 2005.
    8. Generation of computational meshes from MRI and CT-scan data, ESAIM Proc., EDP Sciences, J.F. Gerbeau, E. Cancès eds, vol. 14, 213-223, 2005.
    9. Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage. Partie II: exemples d'applications, F. Alauzet et P.J. Frey, RR-4789 INRIA, 2003.
    10. Génération et adaptation de maillages de calcul à  partir de données anatomiques discrètes, P.J. Frey, RR-4764 INRIA, 2003.
    11. Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage. Partie I: aspects théoriques, F. Alauzet et P.J. Frey, RR-4759 INRIA, 2003.

Students

Teaching

Software

Miscellanea

Links



Updated 2013-01-13 18:47 AM CLST